ar X iv : m at h / 06 02 15 4 v 1 [ m at h . N T ] 8 F eb 2 00 6 What is the Inverse of Repeated Square and Multiply Algorithm ?

نویسنده

  • Sangeeta Maini
چکیده

It is well known that the repeated square and multiply algorithm is an efficient way of modular exponentiation. The obvious question to ask is if this algorithm has an inverse which would calculate the discrete logarithm efficiently. The technical hitch is in fixing the right sign of the square root and this is the heart of the discrete logarithm problem over finite fields of characteristic not equal to 2. In this paper a couple of probabilistic algorithms to compute the discrete logarithm over finite fields are given by bypassing this difficulty. One of the algorithms was inspired by the famous 3x + 1 problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 02 06 9 v 1 [ m at h . SP ] 3 F eb 2 00 5 Triviality of the Peripheral Point Spectrum

If T t = e Zt is a positive one-parameter contraction semigroup acting on l p (X) where X is a countable set and 1 ≤ p < ∞, then the peripheral point spectrum P of Z cannot contain any non-zero elements. The same holds for Feller semigroups acting on L p (X) if X is locally compact.

متن کامل

ar X iv : m at h / 06 02 06 9 v 1 [ m at h . SP ] 4 F eb 2 00 6 SEMICLASSICAL NON - CONCENTRATION NEAR HYPERBOLIC ORBITS

For a large class of semiclassical pseudodifferential operators, including Schrödinger operators, P (h) = −h∆g + V (x), on compact Riemannian manifolds, we give logarithmic lower bounds on the mass of eigenfunctions outside neighbourhoods of generic closed hyperbolic orbits. More precisely we show that if A is a pseudodifferential operator which is microlocally equal to the identity near the hy...

متن کامل

ar X iv : m at h / 05 02 15 9 v 1 [ m at h . G T ] 8 F eb 2 00 5 POINT CONFIGURATIONS AND BLOW - UPS OF COXETER COMPLEXES

The minimal blow-ups of simplicial Coxeter complexes are natural generalizations of the real moduli space of Riemann spheres. They inherit a tiling by the graph-associahedra convex polytopes. We obtain configuration space models for these manifolds (of spherical and Euclidean Coxeter type) using particles on lines and circles. A (Fulton-MacPherson) compactification of these spaces is described ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006